Answer:
Option A is correct
[tex]2x^2-5x-7=0[/tex]
Step-by-step explanation:
Given the equation:
[tex]x+9=2(x-1)^2[/tex]
Using identity:
[tex](a-b)^2=a^2-2ab+b^2[/tex]
then;
[tex]x+9 = 2(x^2-2x+1)[/tex]
Using distributive property: [tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]
[tex]x+9 = 2x^2-4x+2[/tex]
Subtract x from both sides we have;
[tex]9= 2x^2-5x+2[/tex]
Subtract 9 from both sides we have;
[tex]0=2x^2-5x-7[/tex]
or
[tex]2x^2-5x-7=0[/tex]
Therefore, the equation [tex]2x^2-5x-7=0[/tex] is written in the form of [tex]ax^2+bx+c=0[/tex]