Answer:
DV/dt   = 0,2355 m³/min
Step-by-step explanation:
Conical tank volume   V  =  1/3 *π*r²*h
r radius at the top   2 meters
when depth of water is 3 meters the radius of the level of water is:
let   α  angle of vertex of cone then
tan∠α  = 2/8     tan∠α  = 1/4     tan∠α  = 0,25
At the same time when water is at 3 meters depth  radius is
tan∠α  = r/3       0,25*3= r     r  = 0,75 m
Now
DV/dt   =  (1/3)*Ï€*r²*Dh/dt      Â
Dh/dt  =  0,4 meters/min
By substitution
DV/dt   = 0,2355 m³/min